Page 8 of 9

بسم الله الرحمن الرحيم
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Information and Computer Science Department

2012/2013 Second Semester (Term 112)

ICS201: Introduction to Computing II (3-3-4)

MAJOR EXAM I
Thursday, March 1st 2012, 09:30 AM – 11:30 AM

120 MINUTES
	Student Information

	Name:
	

	ID:
	
	
	
	
	
	

	Section:
	
	

	Scored Marks

	Question No.
	Maximum Score
	Score

	01
	15
	

	02
	12
	

	03
	19
	

	04
	54
	

	TOTAL
	100
	

 System.out.println("GoodLuck");

Question 1 (15 points):

Select the most correct choice for each of the following multiple choice questions:

1) A(n) ………………… method can't be overridden in derived subclasses.
a. final

b. abstract

c. protected

d. static

e. none of the above is correct

2) A(n) ………………… class can't be used to instantiate (construct) objects, but rather, it is useful as a model for extending subclasses.
a. final

b. abstract

c. protected

d. static

e. none of the above is correct

3) A protected method of a class can be invoked by:

a. An extending subclass that must be in the same package

b. An extending subclass or any other class in the same package
c. Only a class that must be in the same package
d. Only an extending subclass
e. Only inside the class in which this method is defined
4) Starting from Java 5.0 and above, overridden and overriding methods can have:
a. Same parameter list, with different unrelated return types

b. Different parameter list, with different return types

c. Same parameter list, with the return type of the overriding method being a superclass of the return type of the overridden

d. Same parameter list, with the return type of the overriding method being a subclass of the return type of the overridden

e. Only same parameter list and exactly the same return type

5) Late binding doesn't take place with a method that is:
a. abstract
b. final
c. protected

d. has no access modifier (package default)
e. Late binding always takes place with all kinds of methods
Question 2 (12 points):
I)

(3 Points)

Explain how you could extend an abstract class having abstract methods without implementing these abstract methods in your derived class. Mention one reason that renders doing such a thing useful.
This holds true if the derived class is an abstract class. This is useful in case this derived class is used as a model for extending further subclasses.
II)

(4 Points)

What are the components that a Java Platform consists of? Give two examples of Java platforms.
Java Virtual Machine (JVM) and set of standard classes (API). Examples of Java platforms are J2EE (Enterprise Edition), J2SE (Standard Edition).
III)

(3 Points)

What are the main tasks performed by the Class Loader?

Loading, linking and initialization.
IV)

(2 Points)

Java strictly doesn't allow direct multiple inheritance between classes, explain two workarounds to simulate multiple inheritance and overcome this limitation.

By implementing Interfaces and by using nested Inner classes to extend other superclasses.

Question 3 (19 points):
I)

(10 Points)

Complete the following code snippet by filling missing blanks as directed by comments:
class Outer {

 public class Inner {

 private void doSomething() { /* Code is not shown! */ }

 private void doSomethingElse() {

 /* Invoke doSomething() defined in Outer class */

 Outer.this.doSomething();

 }

 }

 private void doSomething() { /* Code is not shown! */ }

 private void doSomethingElse() {

 /* Invoke doSomething() defined in Inner class */
 Inner innerObject = new Inner();

 innerObject.doSomething();
 }
}
class Other {

 public Other() {

 /* Create an object of Inner class */

 Outer outerObject = new Outer();

 Outer.Inner innerObject = outerObject.new Inner();

 }
 }

II)

(9 Points)

What is the output of the following code?

class A
{

 public A()
 {
 System.out.println("A's Constructor");
 }

 public void methodOne()
 {
 methodTwo();

 methodThree();

 }

 /* Continue on next page */

 public void methodTwo()
 {
 System.out.println("A's methodTwo");

 }

 public static void methodThree()
 {

 System.out.println("A's methodThree");

 }
}
class B extends A
{

 public B()
 {
 System.out.println("B's Constructor");
 }

 public void methodTwo()
 {
 System.out.println("B's methodTwo");
 }
 public static void methodThree()

 {

 System.out.println("B's methodThree");

 }
}

class Test
{

 public static void main(String[] args)
 {
 A aObject = new A();
 aObject.methodOne();

 B bObject = new B();
 bObject.methodOne();

 aObject = bObject;

 aObject.methodOne();

 }
}
Question 4 (54 points):

Consider the following Course class and ComparableCourse interface:

 public class Course
 {

 private String title;

 private int creditHours;

 public Course(String title, int creditHours) {

 this.title = title;

 this.creditHours = creditHours;

 }

 public String getTitle() {
 return title;
}

 public int getCreditHours() {
 return creditHours;
 }

 public String toString() {

 return "Title: " + title + "\tCredit Hours: " + creditHours;

 }

 }

 public interface ComparableCourse
 {
 /* When this and otherCourse have same title, it returns absolute
 difference of credit hours, otherwise it returns -1 */
 int compareTo(Object otherCourse);
 }
I)

(27 Points)
Write the code for class RegisteredCourse such that:

1. It is a subclass of Course and it satisfies ComparableCourse

2. It has an additional instance variable location (private String)

3. It has accessor and mutator for location

4. Has a constructor that sets title, creditHours and location

5. Has a copy constructor

6. Has proper toString() method

7. Has proper clone() method

8. Has equals() method that overrides any ancestor implementation

Note: It is important that you follow the guideline mentioned in the

 comment of the ComparableCourse interface.

II) (27 Points)
Write the code for a tester class that does the following:

1. Create an array courseList that contains five elements total, two of them are instantiated objects of Course class as follows:

	Course Title
	Credit Hours

	Programming
	3

	Computing
	4

While the rest are instantiated objects of RegisteredCourse class as follows:
	Course Title
	Credit Hours
	Location

	Networks
	2
	22/130

	Networks
	4
	24/128

	Networks
	3
	22/119

2. Pass the courseList array to showInfo(…) method, that prints each element in courseList to the screen.
3. Pass the courseList array to copyList(…) method, that returns a distinct copy of courseList array.

4. Pass the courseList array to findMaxDifference(…) method, that returns an integer representing the maximum difference between any two RegisteredCourse objects in courseList. Returned result should be printed to the screen.

A's Constructor

A's methodTwo

A's methodThree

A's Constructor

B's Constructor

B's methodTwo

A's methodThree

B's methodTwo

A's methodThree

OUTPUT

/* RegisteredCourse Class definition (2 Points) */

class RegisteredCourse extends Course

 implements ComparableCourse {

 /* location, mutator and accessor (4 Points) */

 private String location;

 public void setLocation(String loc) {location = loc;}

 public String getLocation() {return location;}

 /* Constructor (3 Points) */

 public RegisteredCourse(String title, int creditHours,

 String location) {

 super(title,creditHours);� this.location = location;

 }

 /* Copy constructor (4 Points) */

 public RegisteredCourse(RegisteredCourse other) {

 this(other.getTitle(),other.getCreditHours(),

 other.location);

 }

 /* toString() method (3 Points) */

 public String toString() {

 return super.toString() + "\tLocation: " + location;

 }

 /* clone() (2 Points) */

 public Object clone() {

 return new RegisteredCourse(this);

 }

 /* equals() (5 Points) */

 public boolean equals(Object other) {

 if(other == null) return false;

 else if (getClass() != other.getClass())

 return false;

 else { RegisteredCourse rc = (RegisteredCourse) other;

 return (getTitle().equals(rc.getTitle()) &&

 getCreditHours() == rc.getCreditHours() &&

 location.equals(rc.location));

 }

 }�

 /* compareTo() (4 Points) */

 public int compareTo(Object other) {

 if (getClass() != other.getClass()) return -1;

 RegisteredCourse rc = (RegisteredCourse) other;

 if (!(getTitle().equals(rc.getTitle())))

 return -1;

 return Math.abs(getCreditHours() - rc.getCreditHours());

 }

} /* End of RegisteredCourse class */

/* Tester class definition */

class Tester

{

 public static void main(String[] args)

 {

 /* Creating courseList array 1 Point */

 Course[] courseList = new Course[5];

 /* Filling array with instantiated objects 2.5 Points */

 courseList[0] = new Course("Programming",3);

 courseList[1] = new Course("Computing",4);

 courseList[2] = new RegisteredCourse("Networks",2,"22/130");

 courseList[3] = new RegisteredCourse("Networks",4,"24/128");

 courseList[4] = new RegisteredCourse("Networks",3,"22/119");

 /* Calling showInfo and copyList methods 2 Points */

 showInfo(courseList);

 Courses[] copiedCourseList = copyList(courseList);

 /* Printing result of findMaxDifference 1.5 Points */

 System.out.println("Max diff: " +

 findMaxDifference(courseList));

 } /* End of main method */

 /* showInfo method 3 Points */

 public static void showInfo(Course[] courseList)

 {

 for (Course course : courseList)

		System.out.println(course);

 }

 /* copyList method 8 Points */

 public static Course[] copyList(Course[] courseList)

 {

 Course[] listCopy = new Course[courseList.length];

 for(int i = 0; i < courseList.length; i++)

 {

 if (courseList[i] instanceof RegisteredCourse)

 {

 RegisteredCourse rc = (RegisteredCourse) � courseList[i];

 listCopy[i] = (RegisteredCourse) rc.clone();

 }

 else

 listCopy[i] = new Course(courseList[i].getTitle(),

 courseList[i].getCreditHours());

 }

 return listCopy;

 }

 /* findMaxDifference method 9 Points */

 public static int findMaxDifference(Course[] courseList)

 {

 int maxDiff = 0;

 for (int i = 0; i < courseList.length - 1; i++)

 {

 if (!(courseList[i] instanceof RegisteredCourse))

 continue;

 for (int j = i + 1; j < courseList.length; j++)

 {

 if (!(courseList[j] instanceof RegisteredCourse))

			continue;

 else

 {

 RegisteredCourse rc = (RegisteredCourse) � courseList[i];

 if (maxDiff < rc.compareTo(courseList[j]))

 maxDiff = rc.compareTo(courseList[j]);� }

 }

 }

 return maxDiff;

 }

} /* End of Tester class */

PAGE

